3.7.9 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx\) [609]

Optimal. Leaf size=117 \[ -\frac {2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {2 a \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b (a+b) d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b d} \]

[Out]

2*sin(d*x+c)*sec(d*x+c)^(1/2)/b/d-2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*
c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b/d-2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
Pi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b/(a+b)/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3935, 3853, 3856, 2719, 3934, 2884} \begin {gather*} -\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b d (a+b)}+\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{b d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + b*Sec[c + d*x]),x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) - (2*a*Sqrt[Cos[c + d*x]]*EllipticP
i[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*(a + b)*d) + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(b*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3935

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(5/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d/b, Int[(
d*Csc[e + f*x])^(3/2), x], x] - Dist[a*(d/b), Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] /; FreeQ
[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx &=\frac {\int \sec ^{\frac {3}{2}}(c+d x) \, dx}{b}-\frac {a \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b d}-\frac {\int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{b}-\frac {\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b}\\ &=-\frac {2 a \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b (a+b) d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b d}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b}\\ &=-\frac {2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {2 a \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b (a+b) d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 33.05, size = 83, normalized size = 0.71 \begin {gather*} \frac {2 \cot (c+d x) \left (b E\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )-(a+b) F\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+a \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )\right ) \sqrt {-\tan ^2(c+d x)}}{b^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + b*Sec[c + d*x]),x]

[Out]

(2*Cot[c + d*x]*(b*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -
1] + a*EllipticPi[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1])*Sqrt[-Tan[c + d*x]^2])/(b^2*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(159)=318\).
time = 0.14, size = 353, normalized size = 3.02

method result size
default \(-\frac {2 \left (-2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (a -b \right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b \right )}{b \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(353\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(a-b)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+a*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*b)/b/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{\frac {5}{2}}{\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**(5/2)/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x)),x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x)), x)

________________________________________________________________________________________